Approximate dynamic programming solutions with a single network adaptive critic for a class of nonlinear systems
نویسندگان
چکیده
Approximate dynamic programming (ADP) formulation implemented with an adaptive critic (AC)-based neural network (NN) structure has evolved as a powerful technique for solving the Hamilton-Jacobi-Bellman (HJB) equations. As interest in ADP and the AC solutions are escalating with time, there is a dire need to consider possible enabling factors for their implementations. A typical AC structure consists of two interacting NNs, which is computationally expensive. In this paper, a new architecture, called the ‘cost-function-based single network adaptive critic (J-SNAC)’ is presented, which eliminates one of the networks in a typical AC structure. This approach is applicable to a wide class of nonlinear systems in engineering. In order to demonstrate the benefits and the control synthesis with the J-SNAC, two problems have been solved with the AC and the J-SNAC approaches. Results are presented, which show savings of about 50% of the computational costs by J-SNAC while having the same accuracy levels of the dual network structure in solving for optimal control. Furthermore, convergence of the J-SNAC iterations, which reduces to a least-squares problem, is discussed; for linear systems, the iterative process is shown to reduce to solving the familiar algebraic Ricatti equation.
منابع مشابه
An Introduction to Adaptive Critic Control: A Paradigm Based on Approximate Dynamic Programming
Adaptive critic control is an advanced control technology developed for nonlinear dynamical systems in recent years. It is based on the idea of approximate dynamic programming. Dynamic programming was introduced by Bellman in the 1950’s for solving optimal control problems of nonlinear dynamical systems. Due to its high computational complexity, applications of dynamic programming have been lim...
متن کاملA single network adaptive critic (SNAC) architecture for optimal control synthesis for a class of nonlinear systems
Even though dynamic programming offers an optimal control solution in a state feedback form, the method is overwhelmed by computational and storage requirements. Approximate dynamic programming implemented with an Adaptive Critic (AC) neural network structure has evolved as a powerful alternative technique that obviates the need for excessive computations and storage requirements in solving opt...
متن کاملGuaranteed cost neural tracking control for a class of uncertain nonlinear systems using adaptive dynamic programming
This paper presents an adaptive dynamic programming-based guaranteed cost neural tracking control algorithm for a class of continuous-time matched uncertain nonlinear systems. By introducing an augmented system and employing a modified cost function with a discount factor, the guaranteed cost tracking control problem is transformed into an optimal tracking control problem. Unlike existing optim...
متن کاملMidcourse guidance law with neural networks
A dual neural network ‘adaptive critic approach’ is used in this study to generate midcourse guidance commands for a missile to reach a predicted impact point while maximizing its final velocity. The adaptive critic approach is based on approximate dynamic programming. The first network, called a ‘critic’, network, outputs the Lagrangian multipliers arising in an optimal control formulation whi...
متن کاملAdaptive Consensus Control for a Class of Non-affine MIMO Strict-Feedback Multi-Agent Systems with Time Delay
In this paper, the design of a distributed adaptive controller for a class of unknown non-affine MIMO strict-feedback multi agent systems with time delay has been performed under a directed graph. The controller design is based on dynamic surface control method. In the design process, radial basis function neural networks (RBFNNs) were employed to approximate the unknown nonlinear functions. S...
متن کامل